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Locally and globally riddled basins in two coupled piecewise-linear maps
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The chaos synchronization and riddled basins phenomena are discussed for a family of two-dimensional
piecewise linear endomorphisms that consist of two linearly coupled one-dimensional maps. Rigorous condi-
tions for the occurrence of both phenomena are given. Different scenarios for the transition from locally to
globally riddled basins and blowout bifurcation have been identified and desdr&Heb63-651X97)09511-]

PACS numbes): 05.45+b

[. INTRODUCTION so that any neighborhood of the attractor intersects the basin
with positive measure, but may also intersect the basin of
another attractor with positive measure.

The dynamics of the systerfll) is described by two
Lyapunov exponents. One of them describes the evolution on

Two identical chaotic systemg,,;=f(x,) and y,,
=f(y,), X,yeR, evolving on an asymptotically stable cha-
otic attractorA, when one-to-one coupling

Xns 1= T (X) +d1(Yn—Xp), the invariant manifolk=y and is always positive. The sec-
ond exponent characterizes the evolution transverse to this
Yor1=T(Yn)+da(Xy—Y,) (1) ~ manifold and is called transversal. If the transversal

Lyapunov exponent is negative, the geis an attractor, at
is introduced, can be synchronized for some ranged;of least in the weak Milnor sense.
e, i.e., |X,—Yn—0 asn—o [1-13|. When the transversal Lyapunov exponent is negative and
In the synchronized regime the dynamics of the coupledhere exist trajectories in the attractyy which are transver-
system(1) is restricted to one-dimensional invariant sub- sally repelling,A is a weak Milnor attractor with a locally
spacex,=Y,, so the problem of synchronization of chaotic riddled basin, i.e., there is a neighborhdddof A such that
systems can be understood as a problem of stability of than any neighborhood/ of any point inA, there is a set of
one-dimensional chaotic attractok in two-dimensional points inVNU of positive measure that leay# in a finite
phase spacgl4,15. time. The trajectories that leave neighborhdddcan either
The basin of attractioi8(A) is the set of points whose go to the other attractdattractor$ or after a finite number of
w-limit set is contained imA. In Milnor's definition[16] of  iterations be diverted back #. If there is a neighborhood
an attractor the basin of attraction need not include the wholef A such that in any neighborhoddof any point inU there
neighborhood of the attractor, i.e., we say thats a weak is a set of points of positive measure that leé/and go to
Milnor attractor if B(A) has a positive Lebesgue measure.the other attractofattractor$, then the basin of\ is globally
For example, a riddled basii4,15,17—2(Q) which has re- riddled.
cently been found to be typical for a certain class of dynami- In this paper we identify and describe different ways of
cal systems with one-dimensional invariant subsgaceh  transition from locally to globally riddled basins and discuss
asX,=Y, in the exampleg(1)], has positive Lebesgue mea- the conditions for the basin of attraction to be one or the
sure but does not contain any neighborhood of the attractonther. We consider the dynamics of a four-parameter family
In this case the basin of attractigf{ A) may be a fat fractal, of a two-dimensional piecewise linear noninvertible map

1
—[Xn— T’ ) +d1(yn_xn)

fl,p(xn)+d(yn_xn): Xn+1:an+§

F= | D 1 1 2
fl,p(yn)+d(xn_yn): yn+1=pyn+§ (1_|_) yn+|__ Yn— T‘)"_dZ(Xn_Yn)v

wherel,p,d; ,e R, which consists of two identical linearly that, as we show below, conditions for the occurrence of
coupled one-dimensional maps being the generalization aiddled basins can be given analytically. We use the (2ap
the skew tent map. Chaotic attractors of the skew tent maps a test model of coupled chaotic systems.

have been considered {21-27. In comparison with the The outline of this paper is as follows. In Sec. Il we recall
maps studied if14,15,17,18 our map(2) has the advantage the definitions of different types of attractor stability and
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give rigorous conditions for asymptotic and weak Milnor
stability of the synchronized chaotic attractor of m@).
These analytical conditions allow us to obtain a two-
dimensional bifurcation diagram of coupled mags. Two
different types of transitions from locally to globally riddling
basins and their connection with global bifurcations of the
basins of attraction that we identify are studied in Sec. Il
Section IV describes recently identified featuresblafwout
bifurcation from locally riddled and globally riddled basins.
Finally, we summarize our results in Sec. V.

25 -2 15 1 05 0 05 1 15 2 25
d=d+d.

FIG. 1. Regions of asymptotid,; and weak MilnorA, stability
for map (2); p=—1. RegionsA4,; and.A, are shown in black and
gray, respectively.

Il. BIFURCATION DIAGRAM FOR STABILITY OF
ATTRACTORS OF CHAOTIC SYNCHRONIZATION

Consider the two-dimensional map of the plargy] into _ o
itself (2). When A. Asymptotic stability of the attractor

In our previous stud)[28] of map (2) some preliminary

[ analytical conditions for thel d1+ d, parameter regions in
(Lp)ell=11>1——<p<-1y, which A=Al me 7", is (i) an asymptotically stable at-
tractor and(ii) a weak Milnor attractor were obtained. In the
following we generalize these conditions, being both neces-
the one-dimensional mafp , has two symmetrical attractors sary and sufficient.
r)c[—1,0] andI'‘")C[0,1], which are cycles of 2 cha- TheoremThe attractorA,, is asymptotically stable if and
otic intervals (so-called 2'-piece chaotic attractorsDe-  only if (I,p) e T¥'CII (m=0,1,...;k=2,3,...) and the
pending on parametetsandp, m can be any positive inte- conditions
ger. Denotdl ,, as a subregion dfl, Wherel“ﬁnt) is a period-
2™ cycle of chaotic intervals. Bifurcation curves for the tran-
sition ;) —T(*), can be found if28]. . -
For the mapF, ,, each set || —d[kem* (= DTK=D|g— d[kem+2t ("D < (3)

I = p|*mp—d|*m+1<1

(+) (+) are fulfilled, wherea,,, is a sequence of integer numbers de-
A=Ay ={x=yel} fined asay=0, a;=1, and

is a one-dimensional chaotic invariant set that may or may U= -1+ 2am—p (M=23,...)

not be an attractor in the plang,f{). We distinguish three ) ]
types of attraction. The various notions of attractors involvend subregionsl,’ are given as

two properties{(i) that it attracts nearby trajectories atij
I+ 1 1+\/1+4|2mJ

that it cannot be decomposed into smaller attractors. We 2
shall concentrate on the first property sindehas every- Ip'=)(Lp)elll == —<pp<———,
where dense trajectories. Thus the definitions given here " m
should be completed by some minimality condition in order
to be ggqerally valid. _ _ H(k):(“ p)ell:
Definition 1 The setA is anasymptotically stable attrac-
tor if for any sufficiently small its neighborhood)(A)
there exists its neighborhoo®(A) such that if ,y) k=3,4,...,(4)
eV(A) then F"(x,y) e U(A) for any neZ" and distance
p(Fn(X,y);A)—>O, n—oo, where
Definition 2 The setA is aweak Milnor attractorif its
Hb%:;\sin of attraction3(A) has a positive Lebeague measure in | :Iam+(_1)mpam+l+(_1)m+l’
Note that in[28], an asymptotically stable attractor is re-
ferred to as an attractor with the property of strong stability Pm=1mp®m+1, 6)
and a weak Milnor attractor is referred to as an attractor with
the property of weak stability. Among weak Milnor attrac-  In Fig. 1 regions4; of asymptotic stability of attractoh
tors (which are not asymptotically stablere can distinguish are indicated in black; the boundaries 4f are obtained
two classes depending on whether or not the bgg¢iw) has  from relations(3), in which inequality signs were replaced
a full measure in a neighborho&(A). In the first case, i.e., by equality. Numerical calculations have been done gor
when measurg@B(A)NU]=measureJ, the attractoiA can = —1, i.e., for the tent mayh, _,, when formulag4) and(5)
be referred to as Milnor attractor. are transformed to

IK—1 IK-1-1 ]
— — < < — — ,
(= DIE T Pe= = T2
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Definition 3. A set A is an attractor with a locally
: riddled basin of attraction if there is a neighborhdddf A
such that in any neighborhodd of any points inA there is
k11 k-1 ] a set of points inVvNU of positive Lebesgue measure that

It 1
H$n2>=[1<|=—ps2: V2<|<——

Im

leavesU in a finite time.

This riddling property has apparently a local character. It
takes place in a sufficiently small neighborhodd= U (A)
and gives no information about the further behavior of the
trajectories after their leave fro. In the model under
consideration, different situations related to this global dy-
namics property take place. Two of the most spread of them
are the following(note that the mag, , is noninvertiblg.

(i) Locally riddled basin. After leaving neighborhood

B. Weak Milnor stability of the attractor U(A), almost all(in a measure sens@oints return toU.

Conditions for the chaotic invariant SAFnZAEni) tobea Thensome of them, after a finite number of iterations, leave

weak Milnor attractor were obtained using an invariant meal @gain and so on. The d‘)‘/nami_cs f’)f such trajectories pre-
surep= g, , of the mapf, , and can be given in the form sents nonregular temporal “bursting”: The trajectory spends
’ ’ some time(usually long enoughnear attractorA until it

A =[an+(—1)"u]n|l—d| goes away, then, after some other tinfesually short
enough it returns to the neighborhood. This behavior de-
tlamy (=)™ w)]in[p—d| <0, 6) scribes a sort obn-off intermitencywide spread in practice.
If N\, is negative but not too close to zero, the bursts will
usually stop: Finally, the trajectory will be attracted by the
1 attractorA. If A, is negative and sufficiently close to zero
K=H1 o (|X|<I_]_ the bursts can never stop.
mem (i) Globally riddled basin After leavingU (A), a positive
i , . measure set of points goes to another attréstor to infin-
Reg(lg)nsAz of the weak Milnor stability of the attractoh iy, This another attractor may be, for instance, an attracting
=Ap’~ are shown in Fig. 1 in gray; boundaries @5 are  point cycle or attracting cycle of chaotic two-dimensional
obtained from conditiori6) by replacing the inequality by an (2D) sets.
equality. _ Only in the globally riddled case can the basin of attrac-
Unfortunately, generally we do not have analytical ex-tion g(A) have a riddled structure of a fat fractal as a subset
pression for the density of the measureu as it can be of g2, which means the following: The neighborhood of any
explicitly found only in exceptional cases. For example, inpoint (x,y) e B(A) is filled by a positive Lebesgue measure
the moment of the first homoclinic bifurcation of the fixed ggt of points k,y) that are attracted by another attractor
point of f| , [i.e., whenl =p/(1-p?)] the density function giher attractors
p=p(X) is piecewise constant with two break points- In Figs. 2a) and 2b) we show the examples of locally
=1/ such thatu{|x|<1A}=1/p% riddled basins forl=1.3, p=—2, and d,;=d,=0.6 [Fig.
Conditions(6) shows the negativeness of the transversab(g)] and globally riddled basins fdr=1.3, p= — 2, andd,
Lyapunov expo_nen?tL of thg typical trajgctqry in the attrac- =d,=0.725[Fig. 2(b)]. The attractorA(*) of Fig. 2a) at-
tor A. In numerical calculations shown in Fig. 1, we used theyracts almost all points from its neighborhood, but it is not

expression fon, from Birkhoff's ergodic theorem Lyapunov stable. In Fig.(®) the attractoA(") is not asymp-

W=11<|=—-p=2: <
i [1 B e N (T

(k=34,...), &)

where

ly=—Pm=1%" (5)

where

" totically stable as in any its neighborhood there exists a posi-
x = lim E 2 In| " (x,) —d| tive measure set of points that goes to another attraltor
+ N N A=0 n ' or to infinity. These properties are clearly visible at the en-

largements shown in Figs(@—2(e). In Fig. 2c) we notice

where{x,=f"(xo)} is a typical trajectory of the mafy , in that all points from the neighborhood (0.520.5,1) go to
the attractorA. the attractorA*. However, some of these points temporally
leave this neighborhood. In Fig(® we presented the points
in the neighborhood ohA(*) that under iterations of ma(®)
leave the neighborhodd =(0.4,1.1)< (0.4,1.1)(white area

Suppose that the transversal Lyapunov exponendbf a  and points(gray areathat do not leave this neighborhood.
typical trajectory on the attractdszﬁnt) is negative, but Finally, aimost all points from both areas converged,
still there exist trajectories o\, which are transversally but those from the white region have to follow a longer path.
repelling, i.e., we are in the gray regiof, in Fig. 1. Then Note that the locally riddled basin contains also a zero-
one can simply check that the attraci#ris not stable in a measure set of poin{éncluding unstable periodic onethat
Lyapunov sense as there exists a neighborHdaslich that  are not attracted bA(*) (see[29-31)). But when a com-
any neighborhood/ contains a positive Lebesgue measureputer simulation is processed, points not attractedAby
set of points that leav® under the iterations d¥, . In this  cannot usually be seen on the screen and one can arrive at the
case the basin of attraction éfis locally riddled[2]. wrong conclusion that a locallybut not globally riddled

C. Locally and globally riddled basins



6396 YU. MAISTRENKO, T. KAPITANIAK, AND P. SZUMINSKI 56

25 - 10

2.5 il 0.5
225 x 23
(a) (c)
2.5
),’
257 > :
-2.5 X 5 d
(b)

1.0

y

0.5

0.5 X 1.0
(e)

FIG. 2. AttractorsA* andA~ of map(2); I=1.3 andp=—2. (a) d;=d,=0.6,(b) d;=d,=0.725, andc) and(d) enlargements ofa)
and (b), respectively. Points that under iterations of n¢ap temporally leave the neighborhood (0.4,2xX0.4,1.1) are indicated in white
in (c). Basins of attraction of attractors’ andA~ are shown, respectively, in darker and lighter gray and the basin of attraction at infinity
is indicated in white.

basin can represent a set openiifithat includes a neigh- =—0.9 basins of attractors*) andA(") are riddled by the
borhood of the attractoA(*). Finally, in Fig. 2e) we can  basin of the attractor at infinity as shown in Figgbj3and
observe a typical case of global riddling. The basin of attrac3(c) [particularly in the closeup in Fig.(8)]. The similar
tor A(T) (darker gray is riddled by the basin of attractét™ type ofl-g bifurcation occurs in the case shown in Fig&)2

(lighter gray. and 2b), where basins of both attractafé™) and A(™) are
riddled by each other.
Il. TRANSITION FROM LOCALLY A different type ofl-g bifurcation is shown in Figs.(#)—
TO GLOBALLY RIDDLED BASINS 3(f) for I=—p=v2. As in the first type before bifurcation

For map(2) we observed two types of bifurcation leading [F('EJ)' 3d), (d_l)_ d=—0.94], the basins of both attractors
to the transition from locally to globally riddled basifisg anczf\)  are locally but not globally riddledonly at-
bifurcation. The examples of these bifurcations are shown inffactorA™” is shown. After the bifurcation, new attractors
Figs. 3a)—3(f). The first type ofi-g bifurcation is shown in A1 andA, form [Fig. 3(€) and the closeup in Fig.(8, d;
Figs. 38—3(c) for | =1.95 andp= — 1.95. Before the bifur- =d2=0.935 in the neighborhood oA(*) and the basin of
cation ford,=d,= — 1 [Fig. 3@] the basins of both attrac- A‘*) becomes globally riddled by the basins of these new
tors AC) andA(™) contain a neighborhood of attractors ex- attractors.
cept of a zero measure set. After the bifurcationderd, These types of-g bifurcations were observed to be typi-
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FIG. 3.1-g bifurcations of mag2): (a)—(c) bifurcations of the first type an@)—(f) bifurcations of the second typ&)—(c) | =1.95 and
p=-1.95: (8 d;=d,=—1, (b) d;=d,=—0.9, and(c) enlargement ofb). (d)—(f) I=v2 andp=—-v2: (d) d;=d,=-0.94,(e) d;
=d,=—0.935, andf) enlargement ofe). Basins of attraction of attractors* and A~ are shown, respectively, in darker and lighter gray
and the basin of attraction at infinity is indicated in white.

cal for map(2). We can summarize their properties in the namely, the boundary dividing the basins of attradoand
following definitions. the attractor at infinity forv<<wvy, which is destroyed on
Definition 4.The|-g bifurcation is of the first(or innen passing throughv=v,. If for v> v, there exists a family of
type if in the local and global riddling the basins of the sameattractorsA, that correspond to the on-off intermittent attrac-
attractors are involved. tors, then the blowout bifurcation is called supercritical; see
Definition 5. The I-g bifurcation is of the secondor [32] for examples and further discussion.
outep type if in the local and global riddling the basins of = From our model, roughly speaking, we can conclude that
different attractors are involved. the blowout bifurcation is subcritical if in the bifurcation
moment the basin of attractéx is globally riddled by the
basin of the attractor at infinity. The blowout bifurcation is
supercritical if in the bifurcation moment the basin Afis
The bifurcation of losing the weak Milnor stability has locally riddled or it is globally riddled by the basins of some
been called a blowout bifurcatidd5,17. Recently, Ashwin, attractors among which there are no attractors at infinity.
Buescu, and Stewd82] suggested to use the notion of criti- ~ Note that in the subcritical case the blowout bifurcation is
cality for the classification of blowout bifurcations, analo- really like an explosion giving rise to the immediate disap-
gous to that for the bifurcation of fixed points in invariant pearance of attractagk: It cannot be seen in computer simu-
subspaces. 1132] the blowout bifurcation atv=wv, was lations, so its basin becomes a zero-measure set. Cardinally
called subcritical if there exists an unstable invariantBsgt  different is the scenario of the bifurcation in the supercritical

IV. BLOWOUT BIFURCATION
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of attraction of the attractora(™) andA(™) is not destroyed.
Shortly after the bifurcation, we observed the intermittence
between the unstable synchronized attracdrs and A(™)

and hyperchaotic attractoAs ™)’ andA(™)’, respectively, in
the form of a “burst.”

In Fig. 4b) we observe the blowout bifurcation of attrac-
tors A() and AC7), the basins of which are mutually glo-
bally riddled by each othefi.e., they are intermingled ac-
cording to the definition if18]) [d;=d,=0.725, Fig. Zb)].
After the bifurcation[d,=d,= 0.8, Fig. 4b)] we observed a
unigue two-dimensional hyperchaotic attractdr In this
case the boundary between basins of attraction of the attrac-
tors A(") and AC7) has been destroyed before bifurcation
(transition from the locally to the globally riddled bagibut
the boundary between the sum of basg(#\(V)) N B(A())
and the basin of the attractor at infinity is not destroyed yet.

V. CONCLUSION

Depending on the coupling parameters, the synchronized
state of map2) is characterized by different types of stabil-
ity. In the case of weak synchronization, the attractor of the

-2-52 S s synchronized state is not asymptotically stable and two dif-
() = x ' ferent states of riddling are possible. Conditions for weak
Milnor and asymptotic stability of the synchronized chaotic

FIG. 4. Attractors after blowout bifurcationd=1.3 andp  attractor of mag?2) are given analytically in a rigorous form.
=-2. (a) d;=d,=0.5, before bifurcation attractos™ and A~ We showed that thé-g bifurcation, i.e., the transition
are locally riddled as shown in Fig(&, and(b) d;=d,=0.8, be- from locally to globally riddled basins, can occur in two
fore bifurcation attractor&™ andA~ are globally riddled as shown recently identified different way. In the firginnen type of
in Fig. 2b). bifurcation in local and global riddling the same attractors
are involved. When at the transition of the bifurcation point a

case. In this case the bifurcation consists in the transitiof€W attracta(s) is (are) formed and the basins of thithese
from the 1D to 2D attractés) and it does not resemble an Ne€W attracto(s) riddle the basins of the initial attractsy we

explosion, as the density of the new 2D attragdochanges have the second type ofg bifurcation.

“slowly” when the parameter is in a neighborhood of a tran-  Th€ blowout bifurcation, i.e., the transition from weak
sition point. stability to weak instability, can be sub- or supercritical. If

The examples of blowout bifurcations for m&p) at | before bifurcation attractors are globally riddled by the at-
=1.3 andp=—2 are shown in Figs. @ and 4b). Our tractor at infinity the bifurcation is subcritical; otherwise it is

numerical calculations allow identification of the two types SUPercritical. The observed properties leg and blowout
of blowout bifurcation. Figure @) shows the blowout bifur- Pifurcations seem to be typical for a class of system with a

cation in the case where before the bifurcation attractor!oWwer-dimensional invariant manifold and important for
A andAC) were locally riddledd,=d,=0.6, Fig. Za)]. studies of chaos synchronization problems.

After the blowout bifurcation the synchronized statey is

no longer stable and we observe two hyperchaotic two-
dimensional attractord&(*)’ and AC™)’ [d,;=d,=0.5, Fig. This work was supported by the KBNPoland under
4(a)]. An unstable invariant set, the boundary between basinBroject No. 7TO7A 039 10.
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